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Abstract. It is shown that the percolation model of hydrogen-bonded crystals, which is a 6-vertex
model with bond defects, is completely equivalent to an 8-vertex model in an external electric field.
Using this equivalence we solve exactly a particular 6-vertex model with bond defects. The general
solution for the Bethe-like lattice is also analysed.

1. Introduction

The 6-vertex model on a square lattice† describes hydrogen-bonded crystals in two dimensions.
Historically, it was Slater [2] who first considered the evaluation of the residual entropy of ice,
a hydrogen-bonded crystal, under the assumptions that (i) there is one hydrogen atom on each
lattice edge, and (ii) there are always two hydrogen atoms near, and away from, each lattice
site (the ice rule). Under these assumptions there are six possible hydrogen configurations at
each site, and one is led to a 6-vertex model. The exact residual entropy of the ‘square’ ice,
i.e. ice on the square lattice, was obtained by Lieb [3], which gives rise to a numerical value
surprisingly close to the experimental residual entropy of real ice (in three dimensions). The
6-vertex model is therefore an accurate description of hydrogen-bonded crystals.

In real hydrogen-bonded crystals, however, bonding defects exist [4]. One way through
which bond defects can occur is caused by the double-well potential seen by hydrogen atoms
between two lattice sites. When two hydrogens occupy the two off-centre potential wells
along a given lattice edge, assumption (i) above is broken, albeit the ice rule (ii) is still intact.
This leads to the fact that one, two or zero hydrogen atoms can be present on a lattice edge.
Indeed, one of the authors of this paper [5] considered this possibility in a percolation model
of supercooled water. The same model was later considered by Attard and Batchelor [6]
who analysed it using series analyses. More recently, Attard [7] reformulated the problem
as a 14-vertex model with Bjerrum bond defects, and analysed the 14-vertex model using an
independent-bond approximation. Here, using a somewhat different mapping, we establish
the exact equivalence of the 6-vertex model with bond defects with an 8-vertex model in an
external field. As a result, we are able to analyse the exact solution in a particular parameter
subspace. We also discuss the general solution of the 6-vertex model with bond defects on the
Bethe lattice.

† For a review of vertex models see [1].
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Figure 1. The six ice-rule configurations. Each solid circle denotes an Ising spinσ = 1 and each
open circle aσ = −1.

2. Equivalence with an 8-vertex model

Consider a square latticeL ofN sites under periodic boundary conditions so that there are 2N

lattice edges. The lattice is hydrogen bonded with defects such that there can be one, two or
zero hydrogen atoms on each lattice edge. As the hydrogen atoms are placed off-centre on the
edges, we place two Ising spinsσ, σ ′ on each lattice edge such thatσ = 1 denotes that the site
is occupied by a hydrogen, andσ = −1 that the site is empty. However, the ice rule dictates
that the sum of the four Ising spinsσ1, σ2, σ3, σ4 surrounding a square lattice site must vanish.
Altogether there are six ice-rule configurations as shown in figure 1.

More generally, we consider the ice-rule model with weights

ω1 = ω2 = a ω3 = ω4 = b ω5 = ω6 = c (1)

whereωi is the weight of theith configuration shown in figure 1. We denote the weights (1)
by ω(σ1, σ2, σ3, σ4), where the subscripts are indexed as shown andω1 = ω(1,−1,−1, 1),
etc. The weightω(σ1, σ2, σ3, σ4) satisfies the ‘spin-reversal’ symmetry

ω(σ1, σ2, σ3, σ4) = ω(−σ1,−σ2,−σ3,−σ4) (2)

and vanishes except for the six weights given in (1). To each lattice edge containing two spins
σ andσ ′, we introduce an edge factorE(σ, σ ′) to reflect the effect of bond defects. Then, the
partition function of interest is

Z =
∑
σ=±1

∏
vertices

ω(σ1, σ2, σ3, σ4)
∏
edges

E(σ, σ ′). (3)

In the 6-vertex model without bond defects we haveE(σ, σ ′) = (1− σσ ′)/2, so that there is
precisely one hydrogen on each lattice edge. The model considered by Attard [7] is described
by

E(σ, σ ′) = w+ σ = σ ′ = 1

= w− σ = σ ′ = −1

= 1 σ = −σ ′. (4)

The percolation model of [5] is equivalent to a special case of (4) withw+ = w− = w = e2K

and

E(σ, σ ′) = eK(σσ
′+1) = eK(coshK)(1 + zσσ ′) (5)

wherez = tanhK. For our purposes, we shall restrict our considerations to the percolation
model (5).

Attard and Batchelor [6,7] adopted an arrow representation for the hydrogen configurations
which, due to the occurrence of defects, led to a 14-vertex model with Bjerrum defects. A
weak-graph transformation [8] is then performed for the 14-vertex model. Here, we expand
the partition function directly. Substituting (5) into (3) and expanding the second product
over the edges ofL, we obtain an expansion of 22N terms. To each term in the expansion
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Figure 2. The 8-vertex model configurations.

we associate a bond graph by drawing bonds on those edges corresponding to thez factors
contained in the term. This leads to a 16-vertex model onL. Besides an overall Boltzman
factor(eK coshK)2N , the 16-vertex model has vertex weights

W =
∑

σ1σ2σ3σ4

(
ω(σ1, σ2, σ3, σ4)

∏
(
√
zσi)

)
(6)

where the product is taken over those incident edges with bonds. The symmetry relation (2)
now implies thatW = 0 whenever there are an odd number of incident bonds, and the 16-vertex
model becomes an 8-vertex model.

Using the bond configurations of the 8-vertex model shown in figure 2, it is straightforward
to deduce, using (6), the following vertex weights:

W1 =
∑

ω(σ1, σ2, σ3, σ4) = 2(a + b + c)

W2 = z2
∑

σ1σ2σ3σ4 ω(σ1, σ2, σ3, σ4) = 2z2(a + b + c)

W3 = W4 = z
∑

σ2σ4 ω(σ1, σ2, σ3, σ4) = 2z(−a − b + c)

W5 = W6 = z
∑

σ1σ2 ω(σ1, σ2, σ3, σ4) = 2z(−a + b − c)
W7 = W8 = z

∑
σ2σ3 ω(σ1, σ2, σ3, σ4) = 2z(a − b − c)

(7)

whereWi is the vertex weight of theith vertex and we have used the fact that in the non-
vanishingω we haveσ1σ2σ3σ4 = 1. Now, in an 8-vertex model configuration, vertices 3 and
4, 5 and 6, and 7 and 8, always occur in pairs and/or in even numbers. Therefore we can
conveniently replace the relevant weights by their absolute values and arrive at, after dividing
all weights by a common factorz,

W1 = z−1(a + b + c)

W2 = z(a + b + c)

W3 = W4 = | − a − b + c|
W5 = W6 = | − a + b − c|
W7 = W8 = |a − b − c|.

(8)

The vertex weights (8) describe an 8-vertex model in an external electric fieldh = (ln z)/2 in
both the vertical and horizontal directions [1].

More generally, if we allow different values ofw+ = w− = wi, i = 1, 2 in (4) and (5)
for the horizontal and vertical edges respectively, and writeh = (ln z1)/2 andv = (ln z2)/2,
wherezi = (wi − 1)/(wi + 1), i = 1, 2, then one arrives at an 8-vertex model with weights

W1 = eh+v(a + b + c)
W2 = e−h−v(a + b + c)
W3 = eh−v| − a − b + c|
W4 = ev−h| − a − b + c|
W5 = W6 = | − a + b − c|
W7 = W8 = |a − b − c|.

(9)

In ensuing discussions we shall consider the general model (9).
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3. The free-fermion solution

The free-fermion model [9] is defined as a particular case of the 8-vertex model in which the
vertex weights satisfy the relation

W1W2 +W3W4 = W5W6 +W7W8 (10)

a condition equivalent to the consideration of a noninteracting many-fermion system in
an S-matrix formulation of the 8-vertex model [10]. In the present case the free-fermion
condition (10) is satisfied when eithera = 0 orb = 0. Without loss of generality, we consider
a = 0.

The closed expression for the free energy of the free-fermion model is well known [9] and
after some algebraic manipulation using the results of [9], we obtain

−βf = lim
N→∞

1

N
lnZ = ln (b + c) +

1

4π

∫ 2π

0
dφ ln (A +Q1/2) (11)

where

Q = [sinh(2v + 2h) + k2 sinh(2v − 2h) + 2k cosh 2v cosφ]2 + 4k2sinφ2

A = cosh(2v + 2h) + k2 cosh(2v − 2h) + 2k sinh 2v cosφ
(12)

with k = |b − c|(b + c).
The critical condition of the free-fermion model is given by [9]

W1 +W2 +W3 +W4 = 2 max{W1,W2,W3,W4} (13)

where

W1 = eh+v(b + c)
W2 = e−h−v(b + c)
W3 = eh−v|b − c|
W4 = ev−h|b − c|.

(14)

Thus, theh–v plane is divided into four regions depending on which vertex 1, 2, 3 or 4 has the
largest weight. Denoting the four regions by I, II, III and IV respectively, as shown in figure 3,
the critical condition (13) can be rewritten as

b

c
= tanhv + e2h

1− e2h tanhv
region I

b

c
= 1− e2h tanhv

tanhv + e2h
region II

b

c
= tanhv − e2h

1 + e2h tanhv
region III

b

c
= 1 + e2h tanhv

tanhv − e2h
region IV.

(15)

The critical condition (15) is plotted in figures 4(a)–(d) for four specific values ofb/c.
Generally, the free energy exhibits a logarithmic singularity at the phase boundaries with
exponentsα = α′ = 0 [9]. Whenb = c, for whichQ is a complete square, however, we have

−βf = max{lnW1, lnW2}
= ln (2b) + |h + v| (16)

and the phase boundaryh + v = 0 separates the two frozen statesW1 andW2.
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Figure 3. The four regions in the planeh–v denoted by I, II, III and IV are, respectively, the regions
where vertex 1, 2, 3 or 4 has lowest energy.
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Figure 4. Phase boundaries of the free-fermion model.

4. The Bethe-like lattice

Now, we consider the 6-vertex model with bond defects on a Bethe lattice of coordination
number four. As in the case of the square lattice we place two Ising spins on each lattice



2190 N Sh Izmailian et al

σ
σ

σ
σ

σ
σ

σ
σ

11
12

13
14

01
02

03
04

Figure 5. The Bethe-like lattice.

edge. Instead of dealing with the system where spins are located at the edge of the lattice we
convert the Bethe lattice to a Bethe-like lattice, see figure 5, where the spins are located at the
vertices, by surrounding each vertex of the Bethe lattice by a square obtained by connecting
the nearest to the above-mentioned vertex spins of four edges meeting at the vertex. The study
of systems in Bethe-like lattices is an alternative approach to the usual mean-field theory. The
main features of the model under investigation will be obtained by studying the properties of
the free energy.

The free energy in a region deep inside a Bethe-like lattice must be carefully defined. It
cannot be obtained by directly evaluating the logarithm of the partition function in which the
contribution from the outside of this region is not negligible, and as result the system exhibits
an unusual type of phase transition without long-range order [11–13]. Recently, a method for
the surface-independent free-energy calculation was presented [14, 15]. The free energyf�
per plaquette of our model is expressed as

−βf� = lim
n→∞

1
2(lnZn − 3 lnZn−1) (17)

whereZn andZn−1 are the partition functions of the 6-vertex model with bond defects on the
Bethe-like lattice consisting ofn andn− 1 generations, respectively.

The calculation on the Bethe-like lattice is based on a recursion method [16]. When the
tree is cut at the central plaquette, it is separated into four branches, each of which contains
three branches. Then the partition function of interest (3) can be written as follows:

Zn =
(
w + 1

2

)N(n)
b ∑
{σ0i }

ω(σ01, σ02, σ03, σ04)gn(σ01)gn(σ02)gn(σ03)gn(σ04) (18)

whereN(n)
b = 2(3n − 1) is the number of bonds,n is the number of generations andgn(σ0i )

is in fact the partition function of a branch nearest to the 0i site.
Each branch, in turn, can be cut along any site of the first generation, and the expressions
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for gn(σ0i ) can therefore be written in the form

gn+1(σ01) =
∑
{σ1i }
(1 + zσ01σ13)ω(σ11, σ12, σ13, σ14)gn(σ11)gn(σ12)gn(σ14). (19)

After dividing gn(−) by gn(+), we obtain a recursion relation forxn = gn(−)/gn(+). Let us
consider the case when a series of solutions of the recursion relation converges to a stable point
atn→∞, namely,

lim
n→∞ xn = x.

We obtain the following equation:

x = (1− z)x2 + (1 + z)x

(1 + z)x2 + (1− z)x . (20)

All the xn are positive and therefore the stable pointx is also positive. We should note that the
equation of state (20) has singularity atz = −1 (orK = −∞). This case corresponds to the
6-vertex model without bond defects.

We are now in a position to compute the free energy per plaquette of our model. Using
equations (17)–(20), the expression for the free-energy functional can be written as

−βf� = lim
n→∞

1

2
(N

(n)
b − 3N(n−1)

b ) ln
w + 1

2
(21)

+ lim
n→∞

1
2[ln8(x(n−1)) + ln9(x(n))− 3 ln9(x(n−1))]

where

9(x) = 2(a + b + c)x2 and 8(x) = (a + b + c)4x4[(1 + z)x + 1− z]4. (22)

It easy to see thatN(n)
b − 3N(n−1)

b = 4 for all n. Thus the free energy per plaquette can finally
be written as

−βf� = ln
(w + 1)2

2
(a + b + c) + ln

(1 + z)x + 1− z
2

. (23)

Together with expression (20) forx it gives the free energy per plaquette of the 6-vertex model
with bond defects.

The equation of state (20) always hasx = 1 as its fixed-point solution. In this case the
free energy per plaquette is

−βf� = ln
(w + 1)2

2
(a + b + c). (24)

In the case ofa = b = c = 1, we recover the result obtained by Attard and Batchelor [6] for
the 6-vertex model with bond defects in the mean-field (independent-vertex) framework,

−βf� = ln 3
2(w + 1)2

which reduces to Pauling’s estimate whenw = 0 [17].
The free energy (24) for the 6-vertex model with bond defects on the Bethe-like lattice

is analytical everywhere, while the vertex model on the square lattice has a very rich phase
diagram, a consequence of the plethora of couplings that may be assigned to different arrow
configurations and orientations. On the Bethe-like lattices orientational order is lost as there
is no consistent ‘up’ and ‘down’ for a vertex. The cyclic ordering of edges round a vertex also
disappears on the Bethe-like lattice. The number of couplings is thus reduced in the Bethe-like
lattice with respect to the square lattice.
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Figure 6. The specific heat for the Bethe-like lattice of figure 5 as function ofT/K for a = b, and
for p = (εa − εc)/K = 0, 1.

For the specific heat, we obtain

C = d

dT

[
T 2 d

dT
(−βf�)

]
= 2w

(w + 1)2
(lnw)2 +

ab(ln a/b)2 + ac(ln a/c)2 + bc(ln b/c)2

(a + b + c)2
(25)

or, explicitly,

C = 1

T 2

2K2

(coshK/T )2
+
ε2
abe

εab/T + ε2
ace

εac/T + (εab − εac)2e(εab+εac)/T

T 2(1 + eεab/T + eεac/T )2
(26)

whereεab = εa − εb, εac = εa − εc and

a = e−εa/T b = e−εb/T c = e−εc/T .

The specific heat versusT/K for a = b is plotted in figure 6.

5. Summary and discussion

In this paper we have considered a 6-vertex model of hydrogen-bonded crystals with bond
defects. We have established the exact equivalence of the 6-vertex model with bond defects
with an 8-vertex model in an external electric field. Using this equivalence we exactly solve
our model in the free-fermion subspace. We also obtain the exact solution of the 6-vertex
model with bond defects on a Bethe-like lattice.

In [5], one of us used the percolation representation of the hydrogen-bonded model to
argue that the specific heat of the system will increase as the temperature decreases from very
high temperature. Figure 6 indeed shows such behaviour. However, the specific heat in figure 6
does not diverge. It is of interest to calculate the specific heat for square or diamond lattices
using the Monte Carlo method. We expect to find singular specific heat behaviour in such
systems.



6-vertex model of hydrogen-bonded crystals 2193

Acknowledgments

This work was partly supported by the National Science Council of the Republic of China
(Taiwan) under grant number NSC 89-2112-M-001-005. The work of FYW is supported in
part by the National Science Foundation grant DMR-9614170. FYW thanks C K Hu for the
hospitality at the Academia Sinica and T K Lee for the hospitality at the National Center for
Theoretical Sciences where this work was completed.

References

[1] Lieb E H and Wu F Y 1972Phase Transitions and Critical Phenomenavol 1, ed C Domb and M S Green (New
York: Academic)

[2] Slater J C 1941J. Chem. Phys.9 16
[3] Lieb E H 1967Phys. Rev. Lett.18692
[4] See for example Glasser M L 1983J. Stat. Phys.33753
[5] Hu C K 1983J. Phys. A: Math. Gen.16L321
[6] Attard P and Batchelor M T 1988Chem. Phys. Lett.149206
[7] Attard P 1996PhysicaA 233742
[8] Nagle J F 1966J. Math. Phys.7 1484
[9] Fan C and Wu F Y 1970Phys. Rev.B 2 723

[10] Hurst C A and Green H S 1960J. Chem. Phys.331059
Hurst C A 1966J. Math. Phys.7 395

[11] Eggarter T P 1974Phys. Rev.B 9 2989
[12] Muller-Hartmann E and Zittartz J 1974Phys. Rev. Lett.33893
[13] Wang Y K and Wu F Y 1976J. Phys. A: Math. Gen.9 593
[14] Gujrati P D 1995Phys. Rev. Lett.74809
[15] Ananikian N S, Avakian A R and Izmailian N Sh 1991PhysicaA 172391

Ananikian N S, Izmailian N Sh and Oganessyan K A 1998PhysicaA 254207
[16] Hu C-K and Izmailian N Sh 1998Phys. Rev.E 581644

Hu C-K, Izmailian N Sh and Oganesyan K B 1999Phys. Rev.E 596489
[17] Pauling L 1935J. Am. Chem. Soc.572680


